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Abstract

This paper develops an algorithm for recovering a collection of linear cracks in a homogeneous

electrical conductor from boundary measurements of voltages induced by specified current

fluxes. The technique is a variation of Newton's method and is based on taking weighted

averages of the boundary data. The method also adaptively changes the applied current flux

at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.
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1 Introduction

In this paper we develop a very efficient computational algorithm to reconstruct a collection

of linear cracks inside a homogeneous conductor from electrostatic boundary measurements.

The algorithm in this paper can be seen as a natural extension of the algorithm developed in

[15] for the reconstruction of a single crack. This extension poses several theoretical as well

as practical challenges. We have also significantly improved the efficiency and versatility of

the earlier algorithm by basing all computations for the underlying conductance problem on

a one-dimensional boundary integral formulation instead of a two-dimensional finite element

formulation. It should be mentioned here that boundary integral formulations have been used

in other implementations of (single) crack reconstruction algorithms [13], [14], and also that

progress on the development of an algorithm for the reconstruction of a single (penny-shaped)

crack inside a three dimensional object is reported in [14]. Algorithms like the one discussed

in this paper are significantly different from more general purpose imaging algorithms (cf.

[3], [61, [9], [16]) that seek to reconstruct an unknown distributed conductivity profile from

similar boundary measurements. Algorithms such as ours are based on the assumption that

certain apriori information about the profile is available and they incorporate this knowledge

into the reconstruction in such a way as to achieve better continuous dependence and better

discrete approximation properties. One important feature of the present algorithm is that

it is based on an adaptive change of the prescribed boundary current patterns to ensure

"maximal" sensitivity. The idea to use some kind of "optimal" current pattern in connection

with impedance imaging has been developed by Gisser, Isaacson and Newell (cf. [9]); the

specific strategy we use is somewhat different from theirs and ties in directly with the iterative

procedure (it does not rely on any eigenfunctions). Our reconstruction is based on the usage

of relatively few averages of the boundary voltage measurements (as opposed to all the

boundary voltage data). In addition to improving the efficiency of the algorithm, this should

also decrease the probability of getting caught in a local minimum when compared to more

standard output least-squares algorithms.

An outline of this paper is as follows. In Section 2 we present the "customary" mathe-

matical model of electrostatic conductance for a smooth, isotropic background medium that



contains a collection of cracks. In particular we demonstrate the duality between the notions

of perfectly insulating cracks and perfectly conducting cracks. We also briefly discuss known

uniqueness and continuous dependence results. Section 3 contains a detailed description of

the 4n functionals that we use for the reconstruction of a collection of n or fewer linear cracks.

This section also provides a discussion of the adaptive strategy that we use for the selection

of the "maximally sensitive" electrode locations. The boundary integral formulation of the

electrostatic conductance problem and its discretization by Nystr~m's method is the topic of

Section 4. The central part of the reconstruction algorithm is a version of Newton's method.

This particular version together with the required gradient computation is discussed in Sec-

tion 5. Section 6 contains a selection of representative computational experiments with our

algorithm. Finally in Section 7 we provide a brief summary of our results and a description

of possible future developments.

2 The Mathematical Model

A single crack is commonly modeled as a perfectly insulating curve a. With a background

conductivity 0 < -t < -I(x) 5 -yl and a finite collection of cracks E = U'=lurk, the steady

state conductance equations thus read

V-(yVv) = 0 in fl\ E, (2.1)

Ov7V =0 on E,

with appropriate boundary conditions on Ofl, e.g.,

V on 00. (2.2)

The field v is normal to E. The function v represents the voltage potential induced in fl.

We assume that fl is simply connected, i.e., it has no holes, and so the entire boundary &f

is accessible from the "outside". Let u denote the "7-harmonic" conjugate to v. It is related

to v by the formula

(Vu), = 7Vv, (2.3)
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where I indicates counter-clockwise rotation by ir/2. For a particular set of constants

Ck, k = 1, ... ,n, the function u solves the problem

V.(--'Vu) = 0 in fl\E, (2.4)

U = Ck on ok, k=l, ... ,n

with
ly- Fu 0 Lon81O = .= on O (2.5)

Here s denotes the counter-clockwise tangent direction on aft and v denotes the outward

normal on 0(. For these particular constants, finding a solution to (2.1), (2.2) is thus

equivalent to finding a solution to (2.4), (2.5). The constants ck may (up to a common

additive constant) be characterized in several equivalent ways:

(a) Let A be the n x n-matrix with elements Aj = fO y-VUW)VU(1 )dx and let b be the

n-vector with elements bi = fn 0U( )ds, where U' ), j = 1,... , n, denote the solutions

to

V -( --VUW ) = 0 in 0N\E,

U ) = 1 on aj,

UU) = 0 On ak, k6j

with
,y_ OUOn.
9- "-W 0 on 011.

Then the vector c = (ci. ,cn)' is the solution to Ac = 6.

(b) The "-y-harmonic" conjugate, u, satisfies -[s = 0, 1 <k < n. Here

hr, - - 7' A denotes the jump in the normal flux across the curve ak. 2

Furthermore, the set of constants {c} =_1 is the unique set of constants for which the

solution to (2.4), (2.5) has this property.
2The expression b+ denotes the limit of the derivative (in the direction v) as one approaches ak from

the side to which P points. ft- denotes the limit as one approaches al from the opposite side.
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(c) Let T be a fixed point on Ofl, in a neighborhood of which 0 is smooth. Let rk be

a smooth curve in f0 \ E connecting T to an interior point of the crack ak, and let

s denote the unit tangent direction along rk, pointing from T towards ok. Then the

constants ck are given by the formulae

Ck=- 7 - ds + u(T),

where v denotes the normal field =-s

The characterization (c) is a direct consequence of the relation (2.3). The characteri-

zations (a) and (b) are practically much more useful; they'are both a consequence of the

following well known result from convex duality.

Proposition 2.1 If 0 is an element of Hll2 (Oafl), then the field y = Vv is the (unique)

minimizer of the functional

1 -1 112 dX-j q b.vds (2.6)

in the space H = L2 (fl)f{r : V.7 =O in O\E, 7?-v=Oon ok, k=l,...,n}.

It is not difficult to see that any element of the space H satisfies V • 77 = 0 in all of

fl and therefore has the form Y1 = (Vw) ± for some w E Hl(fl), with w being constant on

each ak. Conversely, it is also true that any vector field of the form 7 = (Vw)', w E Hl(fl)

nf{w = constant on each ok, k = 1, ... , n}, is in the space H. After insertion into (2.6) we

obtain yVv = (Vu)', where u is the minimizer of the functional
1 IV1 0

-Id -1  wds

in the space HI(fl) n f{w = constant on each ak, k = 1, ... ,n}. This provides a variational

characterization of the "7}-harmonic" conjugate to v. Let F(d), d E R, denote the expression

1 t t

F(d) 7 JV(U + dU()) 12 dX _ (+ dkU(k))

k=I k=1

From the above discussion it is clear that the set of constants corresponding to u are char-

acterized by the fact that d = 0 is a minimum of F. Equivalently (because of the form of
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F), the set of constants corresponding to u are characterized by the fact that d = 0 is a

stationary point for F. Stationarity of d = 0 is equivalent to the conditions

fy-1VuVU(k) dx = f ,0(k) ds, k = 1, ... ,n. (2.7)

From integration by parts (on the domain f0 \ E) we have

jyT1vuVU(k) dX = [f--4U ds + OkU(k) ds.

Insertion of this into (2.7) now gives that the set of constants corresponding to L, are char-

acterized by
[- [7 _0O. . .  ds = 0 k = 1, ... ,In,

Jk

as asserted in (b).

On the other hand, the function u has the form

= uo + U(, (2.8)
i=1

where uo is the solution to

V'(y-I 1Vuo) = 0 in 1l\E, (2.9)

uo = 0 on Ork, k=l,...,n,

with

1Y"- NO = on an. (2.10)

Because of (2.9) and (2.10) we have fa 7-lVUoVU(k) dx = 0; by insertion of (2.8) into (2.7)

and use of this formula we now obtain

n

c4Yi n--VU(i)VU(k) dX =] fa IU(k) ds k = 1, ... In

which is exactly the characterization (a). The above argument rests on the fact that 0 is

in H'I/2 (Of) (0 is in H- 1/2(0fl)). However, by continuity the characterizations carry over

to cases in which 4 (and 0) are not necessarily so regular that u is a variational solution.

In particular these characterizations remain valid if 0' consists of delta functions, a type of

boundary current we shall repeatedly use in this paper.
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Since u and v are related by the equation (Vu)-L = 7Vv, it is clear that knowledge of the

pair (0, -yLIan) is equivalent to knowledge of the pair (ulan, 0). It is much more convenient

to work with the function u as opposed to the function v, and we shall entirely do so for

the development of our algorithm. In particular by working with u we avoid the difficulties

that are associated with non integrable kernels in the integral equation formulation (cf. [12],

[14]).

Let P0, ... , PM be M + 1 points on 0f; we assume that these points are labeled in order

of counter-clockwise appearance, starting from P0 . For the crack reconstruction we utilize

solutions corresponding to the two-electrode currents Oj = fP0 - p,, j = 1,... M,

V-(-y'Vuj) = 0 in , (2.11)

ui = cU) on ok, k 1, n

with

7'O = 6PO - 6P, on 0l, (2.12)

the constants c j ) being selected so that ~[-y'2 l ds = 0 for k = 1, ... , n. The inverse

problem may now be stated explicitly as follows:

We seek to reconstruct the collection of cracks E = U' Iak from knowledge of the boundary

voltage data { ujjan} M corresponding to the prescribed two-electrode currents Y o -

j=l, ... ,M.

It is known that boundary voltage measurements corresponding to M = n + 1 fixed two-

electrode currents suffice to uniquely identify a collection of n (or fewer) cracks [4]. This

result is an extension of a result in [8] which asserts that boundary voltage measurements

corresponding to two fixed two-electrode currents suffice to uniquely identify a single crack.

Recently an interesting continuous dependence estimate has been obtained for the case when

the background conductivity is constant and there is at most one crack [1]. Briefly described,

this estimate states that if the boundary voltage data (on some open subset of 8Q) deviate

by f then the crack locations differ by at most [log(j log f1)] - 1/4. In the present paper shall

always try to fit the data entirel," by means of linear cracks. For such cracks one can

hope to have better continuous dependence estimates, as indicated by the results in [8]. As

was the case in [15], we base the reconstruction of the cracks on the values of a number
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of functionals (as opposed to all the boundary voltage measurements). In [15] we used 4

functionals corresponding to the reconstruction of a single linear crack; the natural extension

is to use 4n functionals for the reconstruction of n cracks. In the following section we give

a careful description of these functionals.

3 The Functionals

We now specialize to the case of a constant background conductivity, 7 - 1. Let F denote

the vector-valued function

F(E, 0,w)-- ( F(E, V), w(')), F(E, 0, W(2)) , F(E, 0, W(3)) F(E, .0, W(4)) )1 ,

where F(E, 0, w) is given by

F(E, 0,w) = ju(E, 0)- ds, (3.1)

and where (), 1 < i < 4, are particular solutions of

Aw=O in IR2 \E.

The function u = u(E, 4) is the solution to

Au = 0 in Q \E,

U = Ck on ak, k=l,...,n, (3.2)
au_

5- = 4 on 8Q,

with the constants ck uniquely specified by

I uds =0 and f[-lds=O, k=1,...,n.

The exact selection of boundary currents 4' and test functions w = (w(i), W(2 ) , W( 3), w( 4))t is

very important and will be discussed shortly. We select one 4 and one w corresponding to

each crack Ok; whenever we want to emphasize this correspondence we use the notation

4'k and w, = (WO) ( 2 ) W( 3 ) W(4)) t .

7- I o' k O k Crk



We have for convenience chosen the normalization fan u ds = 0 for the voltage potential. We

shall always select w so that

f -wv ds=0, and J [Ywv I ds=O k=1,... ,n. (3.3)

Because of the first identity in (3.3) the function F is unchanged by the addition of a

constant to u, and we could therefore just as easily work with any other normalization.

The components of F are just weighted averages of the boundary voltage data. We use a

weighting function of the form , because of the relation

u(E, 0)-wds =] Vu(,0)Vw dx (3.4)
an 8& )\

that exists between the expression in equation (3.1) and the energy bilinear form (by means

of Green's formula). As will be seen later, these averages are equivalent, in the absence of

any crack, to the set of the first 4 nontrivial Fourier modes of the induced boundary voltage.

The data for our reconstruction consist of measured boundary potentials corresponding

to certain prescribed two-electrode boundary currents. We denote the voltage data cor-

responding to the boundary current V by g(?P) and define a corresponding vector-valued

function

f (Vy, w) = (f(0, w(1)), f(4', w(2)), f(V), w(3)), f(V), w(4)))t,

where f(, w) is given by

f(0,w) = fa g(0 - ds,

and where w0 are the same functions as before. Our algorithm seeks a solution E = {ak}n=1

to the 4n equations

F(E,= f (I',,w,), 1 < k < n.

Consequently, we do not use information about the full boundary voltages for the recon-

struction; we only use information about the values of these particular functionals.

We implicitly assume that our data is consistent so that f (V),k, w,,) corresponds tu some

collection of cracks E* (E* may consist of fewer than n cracks). In reality we therefore solve

Gk(E)= 0, 1 < k < n, (3.5)
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with

Gk(E) = F(E, ,k,w~k) -F(2*,!b¢k,wok) (3.6)

- ( 2 ,,'ok,wok)-f (bok,Wfk).

Clearly E* is a solution to (3.5). If the Frechet derivative Dr { Gk}Iz. (a 4n x 4n matrix)

is nonsingular, then E* is indeed the unique solution to (3.5) near E*, and furthermore, one

may expect that some variation of Newton's method will be an efficient solution technique.

Differentiation with application of the "chain rule" yields the expression

DE{Gk I= = { DF(E,, w=) 1

for the derivative with respect to E (at E*), the right hand side of which is a 4n x 4n matrix

with rows

DEF 02,?k* 1W('))IjE* = fnDuE ), 37=)I ds,(3.7)

I<k<n, 1<i<4.

In [15] we explicitly calculated the expression (3.7) in terms of u and , (eliminating Dru);

we used this alternate expression for the selection of the "maximally sensitive two-electrode"

currents as well as for the Newton's update itself. In our implementation here we shall rely

on essentially the same technique as in [15] for the selection of two-electrode currents, but

we shall directly compute the derivative of u(E2, tk) with respect to E at the discrete level

(cf. Section 5) for use with the Newton's update.

When talking about the derivative with respect to E, we mean the derivative with respect

to the 4n parameters that are used to describe E. Just as in [15] we parametrize a single

crack by (bi, b2), 0, and A, where (b,, b2) are the coordinates of one endpoint, 0 is the counter-

clockwise angle between the crack and the halfline y = b2, x > b, , and A is the length of the

crack (here coordinates of points are relative to a fixed reference coordinate system). For

convenience we order these coordinates q = (0, b2, bi, A); the parameter set corresponding to

E is now given by the vector Q = (q,q 2, ... , q,). The derivative DE.{Gk} consists of the

(n 2) 4 x 4 blocks

Dq, Gk.
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At the solution, E = E*, these blocks equal

Dm FQ, o ,,wa )Iq~. •(3.8)

If the derivatives (3.8) are formed at some Q0 not equal to Q* then they no longer represent

the full derivative of {Gk}; the latter also includes terms where w,, and V), are differentiated

through (cf. (3.6)). For the Newton's update we use a more complete "derivative" which

includes the terms that arise when the wk are differentiated through, but we do not include

differentiation through 0k. The goal behind the choice of w,, and ?Pk is to make the

derivative of {Gk} as far from singular as possible at E - E° , the current stage of the

iteration.

In order to describe the choice of w,, we select a coordinate system such that OUk lies on

the positive xi axis, with one endpoint at the origin. In this coordinate system we choose

W(' ) = Im[z], w(') = Im[z2 ], (3.9)

-Re[(z - Ak) Re(z) >

Wolk -Re[(z - Ak) z(z - Ak)], Re(z) < 2(.0

w Re[ z(z - A))], Re(z) >(4 (3.11)
Wak I -Re[ z(z - Ak)], Re(z) < 2

where z = x1 + ix 2 and Ak denotes the length of O'k. The functions W(3) and w0 ) are extended

to Re(z) = Ak/2 by continuity. Except for a change in w(4), this is exactly the same choice

of test functions as in [15]. Since they are harmonic in 9?, the two functions wl ) and W(2)

clearly satisfy (3.3). It requires some extra calculations to check that W(3) and w(' ) also

satisfy (3.3); for reasons of brevity we omit these calculations here. The fact that W(3) and

w(4) do indeed satisfy (3.3) makes the Remark 1 in Section 3 of [15] superfluous. Notice that

w' I1 < i < 4, vanish on the crack oa.

Remark

Given the specific form of the weight functions w ( ) it is now fairly easy to explain why, inO'k

the definition of Gk, we pick a distinct boundary current 0k corresponding to each k. If as
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an extreme we had picked the same boundary current ik corresponding to each crack, then

the first two equations of (3.5), (3.6) would be solved for all k if

I a---(x) u(E,7k) ds = I -(x)g(O) ds,

o -(y)u(E, 0) ds = I -(y)g(O) ds,

(J 2 _ Y2)u((2 ') ds = _a-(x - Y2)g(V)) ds

1 C (y~uEik) ds = I-a(xy)g(k) ds,ao V f' '
where (x, y) denote coordinates relative to some fixed coordinate system. The system (3.5),

(3.6) would therefore represent i. - more than 2n + 4 equations for the 4n unknowns of E.

For n > 2 this immediately leads to "underdetermination" and a singular Jacobian. M

In [15] we analyzed the structure of the derivative

DqF(q, baO, Wo) lq=qO, (3.12)

for the case of a single crack (and with a slightly different choice of w(4)). With the ordering

of the parameters (0, b2, bl, A) we found that this 4 x 4 matrix was lower triangular. We also

found that if the test functions 00 , 1 < i < 4, had been selected harmonic (and 0 on the

crack) then the last two columns in this matrix would have been zero. Test functions with

singularities like W (3) and W (4) are thus essential to insure that this matrix is non-singular.

Since the only change we make in the test functions concern W (4) we do not destroy the lower

triangular structure of this derivative for the one crack case. In the multiple crack case the

counterparts of the matrix just discussed are the diagonal entries

Dqk F(Q, P, wo )1 QQO.

It is worthwhile noticing that these matrices do not inherit the lower triangular structure.

For a any fixed crack ak contributions corresponding to the other cracks will appear above

the diagonal. These contributions are of the form - f,, [2]wi ds, where the functions wt,,

are related to w(2 by the formulae

,, , 1 " W w~ ) w~ ) c w~ i * ,( 3 .1 3 )

(i)(i (Il W 0

w~)= (-x2,x1 )t -Vw,, o,- aw-) (.13

,,k,3 a I2 w h,,4 = (x , X2 )t V ,C'A
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cf. [15], page 921. However, it is our practical experience that the above selection of wO)
ak

together with the appropriate selection of the two-electrode current 0,, (to be discussed

below) is a very effective way of achieving a Fr6chet derivative which is far from singular.

Remark

It is interesting to consider the limit Ak -+ 0 as one endpoint and the direction of the crack

stay fixed. Let ak be a crack with endpoint at (b1 , b2), zero angle, and length Ak. The

corresponding limits of the functions w(' ) are given in absolute coordinates by

W(1) y - b2 , W(2) = 2(x - bi)(y - b2 ), (3.14)

0 = (x - bi)2 - (y -b 2 ) 2, w( ' ) = x - bi.

Actually, w(l = Wo1) and ) 2 ) identically, since these two functions do not depend

on the crack length. Moreover, the approximations w(') ; woa) and ) w( for the third

and fourth functionals are quite accurate sufficiently far away (e.g. two crack lengths) from

the crack. If Ql is the unit ball and g(O), 0 < 0 < 21r, is the limiting boundary voltage, and

F' = lim~k_,0 F(E, 0, w(')), then (3.14) gives

Fl o f 2' g(O) sin0 dO

F° = 2f2' g(O)sin20 dO - 2b1 fo' g(O) sin0 dO - 2b2 f g(O) cos 0 dO

F3 = 2 f g(O)cos 20 dO - 2bf og(O)cosO dO + 2b2 fo g(O)sin 0 dO

F0 = f 2'g(0) cos 0 dO.

In the limit Ak --+ 0, F thus represents the first 4 Fourier modes of the boundary data. 0

The change we have made in W( 4) can be explained from this remark: with the choice made

in [15] W(3) and w(") had the same limit as A -- 0. The boundary integral implementation of

the algorithm would therefore occasionally attempt to fit the data by just making the cracks

very small, since it then in effect only would have to satisfy 3n equations (using 3n unknowns)

as opposed to satisfying a larger set of 4n equations. We did not encounter this phenomenon

in any of the single crack experiments performed in [15] since the implementation there

waq based on a 2-d finite element formulation, which effectively put a lower bound on the

crack length. The new w(') we have introduced here is simply a (correctly scaled) linear

combination of the w(" and w(') used in [15].
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For the selection of the current ib,, we rely on an appropriate adaptation of the technique

developed in [15]. In that paper we calculated that the first and second diagonal entries of

the matrix (3.12) are m and 2m respectively, where m denotes the expression

WE (a~' - JPtA') ds.

We then proceeded to select a two-electrode current which made this expression largest

possible. In the multiple crack case the first diagonal entry of the k'th diagonal block of

{DEF(E,kW,,w,w)}k=1 is given by

9z' ~2-S, [azu] w~) d,

Mk , ds - E19k d(3.15)

where wkl is as defined by (3.13).

Consider the function k E HI(fl \ ck) satisfying

Ak = 0 in fQ\ rk,

G = 0 on Ork, (3.16)
O~k _ _w__
Nk = I0k, on 9Q?.Ov Ov

Note that w(l), does not identically vanish on o'k, so that k is different from w(1)

insertion of k into (3.15) we have

Mk W ( )  ds - EE1k ft u] wl, ds

= J (&- w4 ,,k)ds - u[a-j ds (3.17)
fan aUk 8V 19

+FI~ fj [ tjI ( k - w") ) ds

--- - w, 1 )ds + -.tk 1, 1 - ds.

To obtain the last identity we have used the fact that k = 0 on Uk and that

f, ik Ok f ____'ds=- ds=-k -ds ds =0.

Concerning the two terms in the last expression of equation (3.17), it is reasonable to assume

that the first term fan 0(&, - w.,l) ds will be the larger (at least for moderate size cracks).
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If we now substitute p = t, - eQ into the last expression in (3.17) and disregard the second

term we get

mk ! (k - w(
1)(P) - (4 - w" ) 1)(Q). (3.18)

We now chose V),, = p- bp so that P0 maximi-es ( ( - wlj)(P) and P1 minimizes

V1 -w~ W~) (Q). For subsequent 2 < k < n we chose 6p. - b p, (the same P0 as for k =1

where Pk is selected so that the expression (k -w( 1 ) )(Po) -(4k- w, (1))(Pk) is of maximal

magnitude, subject to the constraint that the points Po, P1, P2,... , P, stay well separated.

We cannot allow any of the 1% to coincide, for then we would be duplicating boundary

measurements, potentially leading to a singular Jacobian as described in the remark before.

The above construction makes the two-electrode currents appear somewhat like the currents

used for the uniqueness result proven in [4]. For the uniqueness result we needed n + 1

two-electrode currents with n + 2 distinct electrode locations - the currents prescribed above

only number n (with n + 1 electrode locations). We expect that this deficiency is more than

compensated by the fact that the electrode locations change as the iterations proceed.

4 Integral Equation Formulation and Discretization

We now proceed to formulate the boundary value problem (3.2) as an integral equation on

the boundary of the region Q) \ E. Let F(x, y) denote the fundamental solution for the two

dimensional Laplacian given by

r(x, y) = log(lx- yI), ,YE
2ir

The application of standard potential theory arguments (see [7], Sections 3.B-3.D) shows

that u, the solution to (3.2), for x E Q \ E, can be represented as

u ,) j(u(y) ' r(x, y) - r(x,y)&(y)) ds, - zj (x, y) [8u] (y) ds,. (41
I--

Here-8 on 8QIK denotes the normal outward derivative with respect to the y variable. On
any of the cracks Ok, v denotes a unit normal field and f2] -u- denotes the jump

in the normal flux across the crack. To simplify notation we shall use the notation Ok for
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the jump [ ] across ak. The formula (4.1) expresses the value of u at any point in Q \ E in

terms of the Dirichlet and Neumann data for u on 90 and the jump in 2uacross the cracks

E. This is simply Green's third identity applied to the region 11 \ E. It is straightforward
to check that since has at most an r1/2 singularity at the endpoints of any crack and

since the singularity of F at x = y is only logarithmic, equation (4.1) also holds for x E E.

Because u is a constant cl on al (and continuous in n) this implies that

/a
,.(u(y) r(x, y)- r(x,y)(y))dsy - r(x, y)bk(y) dsy = C(4.2)

for x E al. For x E 9fl, an argument similar to that which led to (4.1) leads to the equation

- !r~ ~) 2 -(X, Y) dSY - r (x, Y)qk(Y) dSy = r(x,y)&(y) dsy. (4.3)1 O° = , ()a
2 JdUk-1 ~k

As discussed earlier, if the constants cl are treated as unknowns they can be determined

uniquely from

wa j ds 0, l=l,...n, (4.4)

with the normalization fan u ds = 0. Combining these n + 1 conditions with equations (4.2)

and (4.3) we arrive at the following system of integral equations

a n~(45

-u(x) + Ju(y) xy)dsy - r J (x,y)ok(y)d, (4.5)
2k=1 k

= l r(x, y) (y) ds, x E &I

f1(lI-r(fy)dsy - : Z F(X, Y),k(Y) ds1 .- cl (4.6)

fu s= 01. .,(47
jouds = 0.

The unknowns here are the value of u on 811, Ok on ak and the constants cl, 1 = 1,... ,n.

Given a set of cracks E and Neumann data k one can solve equations (4.5), (4.6) and (4.7)
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to obtain these quantities. The solution to the boundary value problem (3.2) at any point

in 1 can then be obtained from the representation (4.1).

One useful fact to note is the following. Let uo be a harmonic function on Q with

Neumann data 0. The same reasoning used to derive the integral equations for u shows that

uo satisfies the boundary integral equation
- I (cr + j a)-(x, Y) ds, j (x, Y)O(y) dsy (4.8)

for x E 011. A unique solution again requires a normalization such as fag uo ds = 0. If x E fl

then uo(x) can be represented

UO(X) = ]a(uo(y)y'r(xY) - r(x, y)(y)) dsy. (4.9)

Let v denote the difference u - u0 . Combining equation (4.5) with (4.8) and combining (4.6)

with equation (4.9), we find that v satisfies

1k-- k3'I-~x -(Y a ~,y J_ F(X,Y)Ok(Y)dS 1 , = 0, xe Eai (4.10)
2 VW+ a y k=

fa v(Y)-~-r(x, y) ds Z i FI(x,y00k(Y) dS - Cl = -UO(Xr), xE at
k---1 k

where Ok denotes the jump in the normal derivative -v across ak. Note that this is the

same as the jump in a-u, since uo is smooth in fl. The conditions

Olds = 0, l=1,...n, (4.11)

v ds = 0,

are also still enforced. Equations (4.10) and (4.11) provide a means of directly computing

the perturbation v = u - u0 caused by the presence of the cracks. This formulation is more

advantageous than the original formulation since we will use singular boundary data ?k. The

function v = u - u0, however, is smooth up to Ifl and hence avoids any of the problems

associated with the lack of regularity of 0. Moreover, for the specific two-electrode Neumann

data (and a domain in the form of a ball, as considered later) we have a closed form solution

for u0 .

Having derived the boundary integral formulation we now briefly discuss how we discretize

it by means of the so-called Nystr~m method. Suppose that the boundary of the region fl
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is parameterized by z(t) = (zl(t), z2(t)), 0 < t < 1. Let each crack ak be parameterized by

z(t) for k < t < k + 1. In terms of this parameterization, equations (4.10) and (4.11) can be

written as

-?(S)+ K(s, t)O(t) dt - E j G(s, t)O(t) dt = 0, s E [0, 1) (4.12)

n k+1
1K(s, t)4(t) dt - E-I G(s, t)O(t) dt - ci = -uo(z(s)), s E [1,1 + 1)

10 ~ k=1l

and

1+1j (t)jz'(t)dt = 0, 1= 1,...,n,

j 1 (t)z'(t)Idt = 0

where K(s,t) = r-F(z(s),z(t))Iz'(t)l and G(s,t) = r(z(s),z(t))Iz'(t)l. The functions v and

4) k have also been replaced by the single function 0 defined on [0, n + 1] by 0(t) = v(z(t))

for t E [0, 1), 0(t) = 4k(Z(t) for t E [k,k + 1).

Let tj and wj, j = 1,. . . , m, denote the nodes and weights of a quadrature rule on [0, 1,

so that
fo(t)ldt j f (tj)

0 j=l

for reasonably smooth functions f(t). Nystr~m's method for solving an integral equation of

the form

q(s) +j K(s, t)q0(t) dt = f'(s)

consists of replacing the integral by a quadrature rule to obtain

4(s) + K(s, t,)wqj5(t,) = f(s).
j=1

Letting s assume the values tl,..., tn we obtain the m x m linear system

m
0bi + E Kijq i = f, i =1 1...,I rn

j=1

where O, = 4(t,), Kj = K(,,tj)wj and ft = f(t,). The intention is that 4), = 4(t,) Z 0(t).

A complete treatment of Nystr6m's method for second kind Fredholm equations can be found

in [2].
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For a first kind integral equation with a smooth kernel,

TK, K(s, t)(t) dt = f (s)

direct discretization usually leads to a linear system which is very poorly conditioned. This

stems from the fact that the corresponding inverse operator TW1 is unbounded on whatever

space the equation is posed, typically C(O, 1) or L2 (0, 1). The singular values of the operator

TK approach zero rapidly, so that the solution 0 is extremely sensitive with respect to f or to

noise on the right hand side of the equation. The smoother the kernel, the faster the singular

values decay and the poorer is the conditioning of the linear, system. The solution of first

kind integral equations therefore often requires some kind of regularization. As discussed

in 151, however, if the kernel K(s,t) is singular enough on the diagonal s = t, reasonable

results can be obtained from a direct discretization of the equation, without regularization.

In the case of equations (4.12) the first kind portion of the equations (on the cracks) have

a logarithmic singularity along the diagonal s = t, and hence regularization should not be

necessary. We have applied Nystr6m's method directly to the equations. The linear systems

obtained in this manner have good conditioning and in all test cases in which we have a

closed form solution, this method has produced solutions in complete agreement with the

closed form solution.

To apply Nystr6m's method to the equations (4.12), we replace the integrals over the

intervals [1,1 + 1], 1 = 0 ,..., n, with the quadrature rule and then let s assume the values

1 + ti, i = 1,... , m, I = 0,. . . , n. This yields the following linear system in the variables

001, .. • •, m 0o. 111,.. •, m 1,, 6i, 1 •• :
I nn mt

- o + K(ti, tj)wjoj - j E G(ti, k + tj)wjkj = 0, (4.13)
j=1 kI1 j=1

i = 1,.,
Mt n

K(l + ti, tj)wjoj - , G(l + tj, k + tj)wjkj -6c = -uo(z(l + ti)),
j=1l k=1 j=1

i=l, ...,m, = 1
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and
Tn

EO4,jw1 z'(l+t)j =0, 1 = 1,...,n,
j=1

EO~j~jjzI(ti)=I  0 0,
j=1

where the intention is that Okj - O(k-tj) and 4 - Ck. In this formulation there are actually

mn+ m+n+ 1 equations for the mn+m+n unknowns Oki, k = 0,...,n, j = 1,...,m and

6k, k = 1,... n. However, a careful analysis shows that the first m equations have a linear

dependency (the coefficients sum to zero) so that any one of them, e.g., the first, can be

dropped. This gives a linear system of mn + m + n equations for the unknowns qkj and ck.

One need not use the same quadrature rule on the boundary of f0 and the cracks.

Since the solution is smooth on Ofl, we allocate evenly spaced nodes there by t, = i/m,

i = 0,. . . , m - 1. The weights are simply wi = 1/M, corresponding to the trapezoidal rule

on the closed curve Ol. On each crack 0 will typically have r- 1/ 2 singularities at the end-

points and so a quadrature rule is chosen which places more nodes near these singularities

(but not actually at the endpoints). If the linear crack with endpoint at (a, b), angle 0 and

length A is parameterized as (a + tA cos 0, b + t sin 0), 0 _ t < 1, then the nodes are chosen

as (assuming m is even)
i - 1/ol2) i=,..2

m 2

and t1 = 1 - t,.-i+l for i = ' + 1,..., m, where f(x) = 2q-lx q and q is a positive number.

The parameter q controls the spacing of the nodes with q > 1 causing the nodes to "bunch

up" near 0 and 1. We have used q = 2.5. The weights wi are chosen as

(t1 + t2), = 1

Wi= (ti+ 1 - ti- 1), i = 2,..., - 1

2- (tm_, + t,,) .. M

corresponding to a midpoint rule with variably spaced nodes. We have used 60 nodes on

both af and each crack.

One difficulty with discretizing equations (4.12) is the presence of the logarithmic singu-

larity in the first kind portion of the equations along the diagonal s = t. We deal with this
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by using a simple form of product integration based on our quadrature rule. See [2], Section

3.2, for more details.

5 The Jacobian and Newton's Method

We recall that a central part of our crack reconstruction algorithm is to find a solution of

the 4n x 4n system

Gk(2) = F(2,4,'k,wO)-- F(E*,k ,wo,) (5.1)

= F(E,0'kI,w-k)-f(0k,wok), k=1,...,n.

Here the four components of F(E, 4', w) are given by

F(E, 0, w00 ) = u(, ,)---- ds i = 1,...,4,

where u solves (3.2) and () are the functions from (3.9)-(3.11). If we use the vector Q E IR

to describe the crack configuration E and we parameterize 0(11 \ E) as described in the last

section, then the discretized version of each of these components becomes

M aw
F(Q, 0,w) =.. uj -.. (tj)lz(tj)wi (5.2)

j=1

where tj is the jth node for Nysthm's method on Ol, w, is the corresponding weight. The

variables uj are given by uj = uo(tj) + Ooj, where 0j form the first part of the solution to

the system (4.13).

Our approximate method for the solution of (5.1) is a variation of Newton's method. For

that we need an effective method for the calculation of the Jacobian. If q denotes one of the

components of Q, differentiation of the expression (5.2) yields

O F V:, U a Oq (t )  Iz'(t)lwj (5.3)

____ aq Ovaqw_ r (80 0OW 0(0o )) ztjw.
- \ -9q -v (tj) + (uo(t 3) + 00oi) -(t) Iz'(t)Iw,.

Here we have assumed that Iz'I is independent of q on Ol and, as mentioned previously,

we have ignored the functional dependence of the applied current flux 4 on E (this in
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particular gives that "' = 0). Note that the functions w defined by (3.9)- (3.11) are indeed
8q

differentiable with respect to the parameters describing the cracks.

To evaluate X from equation (5.3) we therefore need to calculate 2± the derivatives of

the solution to (4.13) with respect to the parameters which describe the cracks. These can

be computed with little additional effort. Let the linear system (4.13) be written in the form

A(Q)O(Q) = f(Q) (5.4)

where A(Q) is the mn + m + n by mn + m + n matrix appearing in (4.13), f(Q) E IR " n+m+n

is the right hand side, and O(Q) E fr"'+ '+ n is the solution to the system (including the

constants c). Of course all of these quantities depend on the parameters Q. Differentiation

of equation (5.4) with respect to any one of the parameters of Q and use of the fact that

q= 0 gives
A(Q) -ao f 8A A (5.5

Oq 9q i = --- q O(Q), (5.5)

so the derivative satisfies a linear equation of exactly the same form as 0 but with a different

right hand side. Once (5.4) has been solved for 4(Q) (e.g., by LU decomposition), equation

(5.5) can be solved for 2 by simply computing the right hand side and reusing the LU

decomposition.

Below is a global description of our algorithm for crack reconstruction. We denote by

E = f_}=j the estimated cracks at the ith stage of the algorithm, and by Qi we denote

the corresponding set of parameters.

1. Make an initial guess E', set i = 0.

2. Select the maximally sensitive two-electrode fluxes oik corresponding to the cracks a,,

k = 1,... ,n, in the sense defined in section 3.

3. Measure (simulate) the boundary voltage data for each flux and compute f(06 ,I w,,),

k=l,...,n.

4. Compute the voltage data for each flux at E2 = E' and compute F(E2, ,/o, W),
2 1
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5. Compute Gk(E i ) = F(I Eiw,)- f( 1,i,wi), k = 1,...,n. Let G(E) denote the

vector of all residuals{Gk(E)}k 1 (a 4n-vector). If G(E2) (= G(Qt )) is sufficiently

small, terminate with the answer E = V .

6. Compute the approximate Jacobian Ji = "DQG(Q)IQ=Qi", in the sense described ear-

lier.

7. Compute the Newton update ,6Q by solving JibQ' = -G(Q').

8. Update Qi+1 = Qi + 6Qi, i = i + 1, and go to step 2.

In our implementation of Newton's method, as in [15], we solve the linear system

J bQ =-G(Q )

subject to the constraint
JJA(bQ')JJ <_ p

where A is an appropriately chosen diagonal weighting matrix and p a specified parame-

ter. This constrained problem is solved in the least squares sense by means of a Lagrange

multiplier method as outlined in [11]. The constraint on the update markedly improves the

behavior of Newton's method far from the solution.

It should be mentioned that we also constrain the cracks to lie inside the domain Q;

if the algorithm attempts to move a crack outside fQ we perform a simple reflection of the

endpoint(s) that lie outside to get get the updated crack fully inside Q. The algorithm very

rarely attempts to move a crack outside the domain (unless the data based on which we

perform the reconstruction is generated from a collection of cracks, at least which of one lies

very near the boundary). Our implementation will also allow the cracks to intersect each

other; the integral equation formulation continues to make sense in this case, although in

practice one must be careful when dealing with the logarithmic singularities which arise as

a result of the intersection. We deal with this by again using a form of product integration.
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6 Computational Experiments

We have performed a significant amount of computational experimentation with the algo-

rithm we have developed. In this section we briefly describe five such experiments which

we find to be representative. The experiments are all performed on simulated data. It is

our goal to eventually try our algorithm on actual experimental data. A project to build

an experimental setup and a data gathering device is currently in progress [10]. To go part

of the way towards reconstruction based on real data, the last of the experiments described

here pertains to simulated data with a built-in level of noise.

The domain on which the reconstruction is performed is in all cases the unit disk. The

graphics by means of which we illustrate the progress of the algorithm is the same for all

experiments. Each step in the iteration is illustrated by a picture containing two copies of

the unit disk. The disk on the left depicts the previously estimated locations of the cracks

(a set of line segments) as well as the boundary locations of the optimally sensitive electrode

locations. The electrode locations are marked with small circles; the circle corresponding to

PO has been darkened. It is voltage data corresponding to the currents generated by these

electrode locations that are used for the iterative update. The updated estimates of the

crack locations are shown as solid line segments in the disk on the right. The true cracks

which the algorithm seeks to reconstruct, i.e., the cracks from which the simulated boundary

voltage data is generated, are shown as dashed line segments (or dashed circular arcs) in the

disk on the right.

In our first experiment the simulated data comes from three cracks, two of which are

very near the boundary. They are each 0.05 units away from the boundary. The cracks have

lengths 0.25, 0.3 and 0.35. We start the reconstruction procedure by attempting to fit the

simulated data with data generated from a single crack. As the initial guess we select a crack

joining the points (-0.2, 0.2) to (-0.2, 0.6). Figure la shows the first step of the iteiation.

After 31 steps the algorithm has found a root for the system of four functionals and reduced

the residual error (IG(Q)I) to 8.94 x 10"3. Figure lb shows step 31 of the iteration.
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Figure la: Iteration 1: one crack fitted to three crack boundary data.

Figure lb: Iteration 31: one crack fitted to three crack boundary data.

Figure 1c: Iteration 1: two cracks fitted to three crack boundary data.
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Figure Id: Iteration 18: two cracks fitted to three crack boundary data.

Figure le: Iteration 10: three cracks fitted to three crack boundary data.

Figure If: Iteration 24: three cracks fitted to three crack boundary data.
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Figure Ig: Iteration 19: four cracks fitted to three crack boundary data.

At this point it is not possible, based on four functionals, to determine whether the

simulated boundary voltage data comes from just a single crack or several more. The only

way to determine this is to try to fit more functionals. We take the crack shown in the right

disk in Figure lb and divide it into two cracks by cutting out a piece 1/10 of the length at

the center. The two resulting cracks are now used as the initial guess for our algorithm based

on 8 functionals. The first step of the two-crack iteration is show in Figure Ic. After 18

steps the "two-crack iteration" has found a root to the 8-variable system and has reduced the

residual error to 6.9 x 10-16. The final step is shown in Figure Id. Finally we take the largest

of the two cracks from the right disk in Figure Id, divide it into two pieces (by cutting out

the middle 1/10), and give the resulting three cracks as initial guess to our algorithm based

on 12 functionals. This "three crack iteration" locates the root after 24 steps, reducing the

residual error to 2.0 x 10- 1. Steps 10 and 24 of this iteration are shown in Figure le and

Figure lf, respectively. If at this point we take and divide one of the three cracks again and

give the resulting four cracks as an initial guess to our algorithm based on 16 functionals,

then one of two things is likely to happen: 1) these new four crack will remain essentially

where the three cracks already are (and the residual will be very small) 2) the algorithm will

shrink one of the cracks to zero length and the three remaining will stay as before. In the

latter case the residual will not become quite as small since we impose a lower limit (of 0.01)

on the length of the cracks. In both cases the behavior clearly indicates that three cracks

are the right number to fit the data (also for 16 functionals). Figure Ig shows step 19 in a
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"four crack iteration" where the largest crack in Figure If has been divided into two pieces.

As is evident the latter of the two possibilities from before emerges (the residual after 19

steps is 5.2 x 10-4).

The strategy for gradually increasing the number of cracks as outlined above has emerged

after a significant amount of numerical experimentation with many sets of simulated data.

The alternate strategy: to initially guess a sufficient number of cracks and then let the itera-

tions proceed to convergence has generally shown itself to lead to much slower convergence.

Our method based on the use of only a few functionals and the adaptive movement of elec-

trodes has in many of our experiments proven itself to be superior to a least squares fitting

algorithm (using the entire set of boundary voltage data, but a fixed set of electrodes). Our

experience with this least squares approach has been that, except for the one crack case,

it requires a very accurate initial guess in order to converge to the correct solution. For

multiple cracks the least squares functional appears to contain many local minima.

This is not to say that our approach may not occasionally be somewhat slower than indi-

cated by the previous example. We illustrate this with a reconstruction based on simulated

data from four cracks. Figure 2a shows the first step using a single crack (four function-

als). After 17 steps our algorithm finds a root with the residual reduced to 1.72 x 10- 4.

However, as seen in Figure 2b (which shows the final iteration) the single crack that is con-

sistent with the four functionals does not lie near any of the four cracks that were used

to generate the data. We now divide this single crack into two by cutting out the middle

1/10. Using the resulting two cracks as initial guess our algorithm based on 8 functionals

now takes a considerable number of steps before the residual is even reasonably small (and

the cracks are of reasonable size). Figures 2c and 2d show iterations 99 and 198, respec-

tively. We take the two cracks after 198 iterations and divide each of them into two using

the same method as before. The resulting four cracks are provided as initial guess for our

algorithm based on 16 functionals. Iterations 50 and 115 of this process are shown in Fig-

ures 2e and 2f, respectively. After 127 iterations a root is found and the residual has been

reduced to 1.65 x 10- 4. Even though the algorithm is extremely slow it does ultimately

converge. It would require an extremely accurate initial guess to get the least squares algo-

rithm we described before to converge. For comparison figure 2g shows the eleventh and final
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Figure 2a: Iteration 1: one crack fitted to four crack boundary data.

Figure 2b: Iteration 17: one crack fitted to four crack boundary data.

Figure 2c: Iteration 99: two cracks fitted to four crack boundary data.
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Figure 2d: Iteration 198: two cracks fitted to four crack boundary data.

Figure 2e: Iteration 50: four cracks fitted to four crack boundary data.

Figure 2f: Iteration 115: four cracks fitted to four crack boundary data.
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Figure 2g: Least squares, iteration 11: four cracks fitted to four crack data.

iterate of a least squares approach. This computation was done using the full boundary

data and a Levenberg-Marquardt algorithm as outline in [11]. The initial guess used (con-

sisting of four cracks) is the same as that used for figures 2e and 2f. The least squares

approach quickly locates a local minimum and terminates. The four cracks that are used

appear to merge into two.

Frequently in practice there are either a fairly limited number of well-separated cracks,

or many cracks clustered in certain locations. Figures 3a and 3b show the first iteration

and the fifth iteration using our algorithm with one crack (and four functionals) to fit simu-

lated data coming from 10 cracks located in two clusters. A root is found at the fifth iteration

Figure 3a: Iteration 1: one crack fitted to ten crack boundary data.
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Figure 3b: Iteration 5: one crack fitted to ten crack boundary data.

Figure 3c: Iteration 15: two cracks fitted to ten crack boundary data.

Figure 3d: Iteration 99: three cracks fitted to ten crack boundary data.
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with residual 7.11 x 10-"5. We now cut this last crack in two (deleting the middle 1/10) and

give the resulting two cracks as input to our algorithm based on 8 functionals. The algorithm

locates a root after 15 iterations, the corresponding crack locations are shown in figure 3c.

We again split the larger of the two cracks and use that as input for a "three crack" version

of our algorithm - the result after 99 steps is shown in figure 3d, although the algorithm has

not yet located a root.

Another situation that would occur in practice is when the "real" cracks have shapes

other than line segments. Figure 4a and 4b show the first and twelfth iteration of our algo-

rithm using one crack in a case where the simulated data is generated by a crack in the shape

Figure 4a: Iteration 1: one crack fitted to curved crack boundary data.

Figure 4b: Iteration 12: one crack fitted to curved crack boundary data.

32



of a circular arc centered at the origin and going from (0.0,0.5) to (-0.5,0.0). The circu-

lar arc is indicated by the dashed lines in the disks on the right - these are not individual

cracks but are used to indicate the curve. The algorithm finds a root at the twelfth iteration.

We now proceed to divide the last crack of the "one crack iteration" into two (as before) and

we iterate using the "two crack version" of our algorithm. Figure 4c shows the 50th iteration

of this process. The algorithm has not yet located a root - actually the crack locations have

not changed considerably since the 15th iteration.

Figure 4c: Iteration 50: two cracks fitted to curved crack boundary data.

Figure 4d: Iteration 50: four cracks fitted to curved crack boundary data.

We now divide the final two cracks from Figure 4c into four and give these as an initial
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guess to the "four crack version" of our algorithm. Figure 4d shows iteration 50 using four

cracks. The algorithm has not yet located a root. The two longest cracks, which already

emerge after 13 iterations, provide a reasonable approximation to the curved crack. One of

the two shorter cracks stays close to the circular arc (and the two large cracks) the other

one seeks to exit the domain; the program apparently cannot adjust them to find a root, but

there is a lower bound on their length, so they cannot entirely disappear.

In the final example we have taken data generated by a two cracks and added 10%

noise. The noise added is independent and gaussian with a zero mean and standard de-

viation equal to 1/10 the mean square value of u - uo on O, where u is the potential

Figure 5a: Iteration 1: two crack fitted to two crack data, 10 percent noise.

Figure 5b: Iteration 24: two crack fitted to two crack data, 10 percent noise.
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and u0 is the harmonic function with the same flux as u. In figure 5a we show the first

iteration. Figure 5b shows the 24th iteration, at which point the algorithm terminates hav-

ing found a root. Figure 5c shows the result of taking the final crack locations in figure

5b and using them as an initial guess to a least-squares minimization routine. This rou-

tine uses a fixed set of electrodes, those from the last iteration of our algorithm. These

are presumably close to the most sensitive electrode locations for the given cracks. The

Levenberg-Marquardt routine reduces the total least-squares residual from 0.085 to 0.032 in

13 iterations and improves the estimate of the crack locations.

Figure 5c: Least squares, iteration 13: two crack fitted to two crack data, 10

percent noise.

7 Summary

In this paper we have developed a very efficient algorithm for the reconstruction of a collec-

tion of cracks based on electrostatic boundary measurements. We use a "dual" variational

formulation for the forward electrostatic problem, and solve this numerically by means of a

Nystr6m's approximation of the corresponding boundary integral equations. Our reconstruc-

tion is based on adaptively changing the current patterns, so as to maximize the sensitivity

of the measured voltage differences. Our reconstruction is based on a limited set of aver-

ages of the boundary voltage measurements as opposed to the entire set of measurements;

this should lead to greater efficiency and less rigidity. The algorithm is currently entirely
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two-dimensional, but it should be very interesting to extend it to three dimensions. At this

point we have only investigated the behavior of the algorithm when used on "synthetic"

data (including data with noise). It should be very interesting to apply the algorithm to

data coming from "real" experiments. Frequently cracks appear as clusters of many small

(microscopic) cracks; our algorithm, when applied to data generated by clusters of small

cracks, often very successfully locates a set consisting of a few, well-separated cracks. In this

context it should be extremely interesting to analyze in what sense this reflects the behavior

of the forward problem. To be more specific: it should be interesting to study in what sense

a cluster of small (microscopic) cracks in an appropriate limit approaches a single (lumped)

macroscopic crack.
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